17,131 research outputs found

    Haro15: Is it actually a low metallicity galaxy?

    Full text link
    We present a detailed study of the physical properties of the nebular material in multiple knots of the blue compact dwarf galaxy Haro 15. Using long slit and echelle spectroscopy, obtained at Las Campanas Observatory, we study the physical conditions (electron density and temperature), ionic and total chemical abundances of several atoms, reddening and ionization structure. The latter was derived by comparing the oxygen and sulphur ionic ratios to their corresponding observed emission line ratios (the eta and eta' plots) in different regions of the galaxy. Applying direct and empirical methods for abundance determination, we perform a comparative analysis between these regions.Comment: (Poster paper) 2 pages, 2 figure

    The IACOB project: A grid-based automatic tool for the quantitative spectroscopic analysis of O-stars

    Full text link
    We present the IACOB grid-based automatic tool for the quantitative spectroscopic analysis of O-stars. The tool consists of an extensive grid of FASTWIND models, and a variety of programs implemented in IDL to handle the observations, perform the automatic analysis, and visualize the results. The tool provides a fast and objective way to determine the stellar parameters and the associated uncertainties of large samples of O-type stars within a reasonable computational time.Comment: 8 pages, 2 figures, 1 table. Proceedings of the "GREAT-ESF Stellar Atmospheres in the Gaia Era Workshop

    Fundamental parameters of massive stars in multiple systems: The cases of HD17505A and HD206267A

    Full text link
    Many massive stars are part of binary or higher multiplicity systems. The present work focusses on two higher multiplicity systems: HD17505A and HD206267A. Determining the fundamental parameters of the components of the inner binary of these systems is mandatory to quantify the impact of binary or triple interactions on their evolution. We analysed high-resolution optical spectra to determine new orbital solutions of the inner binary systems. After subtracting the spectrum of the tertiary component, a spectral disentangling code was applied to reconstruct the individual spectra of the primary and secondary. We then analysed these spectra with the non-LTE model atmosphere code CMFGEN to establish the stellar parameters and the CNO abundances of these stars. The inner binaries of these systems have eccentric orbits with e ~ 0.13 despite their relatively short orbital periods of 8.6 and 3.7 days for HD17505Aa and HD206267Aa, respectively. Slight modifications of the CNO abundances are found in both components of each system. The components of HD17505Aa are both well inside their Roche lobe, whilst the primary of HD206267Aa nearly fills its Roche lobe around periastron passage. Whilst the rotation of the primary of HD206267Aa is in pseudo-synchronization with the orbital motion, the secondary displays a rotation rate that is higher. The CNO abundances and properties of HD17505Aa can be explained by single star evolutionary models accounting for the effects of rotation, suggesting that this system has not yet experienced binary interaction. The properties of HD206267Aa suggest that some intermittent binary interaction might have taken place during periastron passages, but is apparently not operating anymore.Comment: Accepted for publication in A&

    The chemical composition of the Orion star forming region: stars, gas and dust

    Full text link
    We present a summary of main results from the studies performed in the series of papers "The chemical composition of the Orion star forming region". We reinvestigate the chemical composition of B-type stars in the Orion OB1 association by means of state-of-the-art stellar atmosphere codes, atomic models and techniques, and compare the resulting abundances with those obtained from the emission line spectra of the Orion nebula (M42), and recent determinations of the Solar chemical composition.Comment: 5 pages, 4 figures, 2 tables. Poster contribution to the proceedings of the LIAC2010 conference "The multi-wavelength view of hot, massive stars

    Gravity Effects on Neutrino Masses in Split Supersymmetry

    Full text link
    The mass differences and mixing angles of neutrinos can neither be explained by R-Parity violating split supersymmetry nor by flavor blind quantum gravity alone. It is shown that combining both effects leads, within the allowed parameter range, to good agreement with the experimental results. The atmospheric mass is generated by supersymmetry through mixing between neutrinos and neutralinos, while the solar mass is generated by gravity through flavor blind dimension five operators. Maximal atmospheric mixing forces the tangent squared of the solar angle to be equal to 1/2. The scale of the quantum gravity operator is predicted within a 5% error, implying that the reduced Planck scale should lie around the GUT scale. In this way, the model is very predictive and can be tested at future experiments.Comment: 12 pages, 9 figures; In section 3 we extend our discussion about the definition of flavor basis in order to clarify in which basis the Gravity contributions are flavor blind. In the section 4 we add some words to explain why the Gravity contributions will not affect the charged lepton mass matrix; Finally we also fixed some minor typos regarding units or plot label

    Feynman-Jackson integrals

    Full text link
    We introduce perturbative Feynman integrals in the context of q-calculus generalizing the Gaussian q-integrals introduced by Diaz and Teruel. We provide analytic as well as combinatorial interpretations for the Feynman-Jackson integrals.Comment: Final versio
    • …
    corecore